

Application of Data Mining in Determining the Performance of Family Planning-Field Officers Using the C4.5 Algorithm

Oris Krianto Sulaiman¹, Muhammad Zulfan Syuri Siambaton²

¹Department of InformationTechnology, Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia

²Department of Informatics Engineering, Universitas Islam Sumatera Utara, Indonesia

ABSTRACT

The performance of Family Planning Field Officers plays a crucial role in the success of family planning programs. Accurate and objective performance evaluation is essential to support effective decision-making and policy formulation. This study applies data mining techniques to determine the performance of Family Planning Field Officers using the C4.5 decision tree algorithm. The dataset used in this research consists of officer performance indicators, including service coverage, counseling activities, reporting accuracy, and community participation. The C4.5 algorithm is employed to classify officer performance into predefined categories based on these attributes. The resulting decision tree provides interpretable classification rules that can support managerial decision-making. Experimental results show that the proposed model achieves satisfactory classification accuracy and demonstrates the effectiveness of the C4.5 algorithm in extracting meaningful patterns from performance data. This study highlights the potential of data mining approaches to enhance performance evaluation systems in public service institutions, particularly in the field of family planning management.

Keyword : Data Mining; C4.5 Algorithm; Decision Tree; Performance Evaluation; Family Planning Field Officers

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Corresponding Author:

Oris Krianto Sulaiman,
Department of Information Technology,
Universitas Islam Negeri Ar-Raniry Banda Aceh,
Banda Aceh, Indonesia
Email: oris.ks@ar-raniry.ac.id

1. INTRODUCTION

Family planning programs play a vital role in improving public health, controlling population growth, and enhancing the overall quality of life in society. The successful implementation of these programs largely depends on the performance of Family Planning Field Officers, who are responsible for providing counseling, delivering services, and maintaining accurate reports at the community level. Therefore, evaluating the performance of these officers in an objective and systematic manner is essential to ensure the effectiveness and sustainability of family planning initiatives.

In practice, performance assessment of Family Planning Field Officers is often conducted using manual evaluation methods or simple descriptive analysis. Such approaches may be subjective, time-consuming, and limited in their ability to uncover complex patterns within large and diverse datasets. As the volume of performance-related data continues to increase, traditional evaluation techniques become less effective in supporting data-driven decision-making. This situation highlights the need for more advanced analytical methods that can process large datasets and generate meaningful insights.

Data mining has emerged as a powerful technique for extracting useful knowledge from large datasets by identifying patterns, relationships, and trends. In the context of performance evaluation, data mining methods can be used to classify, predict, and analyze employee performance based on multiple indicators. Among various data mining techniques, decision tree algorithms are widely used due to their simplicity, interpretability, and ability to generate clear classification rules that are easy to understand by decision-makers.

The C4.5 algorithm is one of the most popular decision tree algorithms and has been successfully applied in various classification problems. It can handle both categorical and numerical data, manage missing values, and perform attribute selection based on information gain ratio. These

characteristics make the C4.5 algorithm suitable for analyzing performance data of Family Planning Field Officers, which often consist of diverse and heterogeneous attributes.

This study focuses on the application of data mining using the C4.5 algorithm to determine the performance of Family Planning Field Officers. The proposed approach aims to classify officer performance based on key performance indicators and to generate decision rules that can support managerial evaluation and policy formulation. The main contribution of this research lies in providing an objective and data-driven performance assessment model that can assist family planning institutions in improving supervision, decision-making, and overall program effectiveness.

2. RESEARCH METHOD/MATERIAL AND METHOD/LITERATURE REVIEW

A. C4.5 Algorithm Implementation

The C4.5 algorithm was applied to construct a decision tree model for classifying the performance of Family Planning Field Officers. The algorithm calculates entropy and information gain ratio to select the most informative attributes for node splitting. The resulting decision tree represents classification rules that describe the relationship between performance indicators and performance categories. These rules are easily interpretable and can be used as decision support for management.

B. Model Evaluation

The performance of the classification model was evaluated using standard evaluation metrics such as accuracy, precision, recall, and confusion matrix analysis. The dataset was divided into training and testing sets to validate the model's predictive capability. The evaluation results were analyzed to assess the effectiveness of the C4.5 algorithm in classifying officer performance and to identify key attributes influencing performance outcomes.

C. Data Preprocessing

Before applying the data mining algorithm, data preprocessing was conducted to improve data quality. This process includes data cleaning to remove incomplete or inconsistent records, handling missing values, and transforming numerical attributes into appropriate formats when necessary. Attribute selection was also performed to ensure that only relevant features were used in the classification process.

3. RESULTS AND DISCUSSION

The interface display results are the stage where the system or application is ready to be operated in actual conditions according to the results of the analysis and design carried out, so that it will be known whether the system or application built can produce a goal that is achieved, and this data mining application is equipped with a display that aims to make it easier for its users. The function of this interface is to provide input and display the output of the application. In this application, it has an interface consisting of a login menu, Community, and a process menu.

The Main Menu displays the login and main menus at the start of the system. The Main Menu is as follows.

1. Login Menu

The login menu is used to secure the system from unauthorized users before accessing the main menu. The login menu displays as follows:

Fig 1. Login Menu

2. Main Menu

The Main Menu serves as a hub for community data, processes, and reports. The main menu displays as follows:

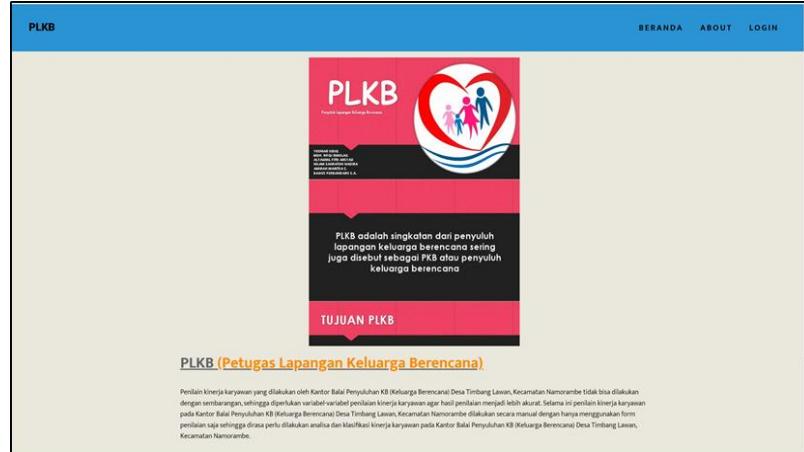


Fig 2. Main Menu

3. Community Data Menu

The Community Data Menu is used to process community data in Timbang Lawan Village, Namorambe District. The Community Data Menu is as follows:

Fig 3. Community Data Menu

4. Process Menu C4.5

The C4.5 process menu is used to process data to determine the performance of the PKLB in Timbang Lawan Village, Namorambe District, using the Decision Tree method. The C4.5 process menu is as follows.

C45			BERANDA		PENILAIAN PLKB		PROSES C45		LOGOUT		
A14	Liona Manalo		4	4	3	2	3	3	4	3	3
A15	Aleetsands Siburan		4	4	4	3	3	4	4	3	3
A16	Omnan Nainggolan		4	4	4	4	3	4	4	3	3
A17	Rendi Nainggolan		4	4	4	4	3	4	4	3	3
A18	Peringatan K.Galinging		4	4	4	4	3	4	4	3	3
A19	Maulina Nainggolan		3	3	3	3	4	4	4	3	3
A20	Peringatan K.Galinging		3	3	3	3	4	4	4	3	3
A21	Turunian Sianturi		4	3	4	3	4	3	3	3	4
A22	Leo Monardo Sianturi		3	3	4	4	3	3	4	3	4
A23	Irma Artaian Shombing		3	3	4	4	3	3	4	3	4
A24	Minton Sianturi		3	4	4	3	4	3	4	3	4
A25	Balige Tua Sianturi		4	3	2	2	3	1	4	3	3
A26	Jekson Sianturi		4	3	2	2	3	1	4	3	3
A27	Makmur Sianturi		4	3	2	2	3	1	4	3	3
A28	Tiernin Togatotrop		3	4	4	3	4	3	3	4	3
A29	Hasiholan Sianturi		3	3	3	3	4	3	4	3	3
A30	Togap Sianturi		4	3	4	4	3	3	3	4	4
A31	David M. Sianturi		4	3	4	4	3	3	3	4	4
A32	Herlina Rotta Shite		4	3	4	4	3	3	3	4	4
A33	Harapan Sianturi		3	4	4	3	4	3	3	4	4
A34	Alfredo S. Sianturi		3	4	4	3	4	3	3	4	4
A35	Eli C. Sianturi		3	4	4	3	4	3	3	4	4
A36	Celis Oktavia Sianturi		4	3	3	3	4	4	4	4	4
A37	Karina Sigalingging		4	3	3	3	4	4	4	4	4
A38	Hulha Siburan		4	3	4	4	3	1	3	4	2
A39	Marhot A. Sianturi		4	4	3	2	1	4	2	4	3
A40	Melida Sianturi		4	3	3	4	2	1	4	4	3

Fig 4. Process Menu C4.5

A. Testing

In this section, you will be asked to conduct testing using new data samples. In this section, you will be asked to verify the accuracy of the system you designed using previously tested and calibrated tools. The results of the program process in determining PKLB performance are as follows.

C45			BERANDA		PENILAIAN PLKB		PROSES C45		LOGOUT		
A23	Irma Artaian Shombing		3	3	4	4	3	3	4	3	4
A24	Minton Siburan		3	4	4	3	4	3	4	3	4
A25	Balige Tua Sianturi		4	3	2	2	3	1	4	3	3
A26	Jekson Sianturi		4	3	2	2	3	1	4	3	3
A27	Makmur Sianturi		4	3	2	2	3	1	4	3	3
A28	Tiernin Togatotrop		3	4	4	3	4	3	3	4	3
A29	Hasiholan Sianturi		3	3	3	3	4	3	4	3	3
A30	Togap Sianturi		4	3	4	4	3	3	4	4	4
A31	David M. Sianturi		4	3	4	4	3	3	4	4	4
A32	Herlina Rotta Shite		4	3	4	4	3	3	3	4	4
A33	Harapan Sianturi		3	4	4	3	4	3	3	4	4
A34	Alfredo S. Sianturi		3	4	4	3	4	3	3	4	4
A35	Eli C. Sianturi		3	4	4	3	4	3	3	4	4
A36	Celis Oktavia Sianturi		4	3	3	3	4	4	4	4	4
A37	Karina Sigalingging		4	3	3	3	4	4	4	4	4
A38	Hulha Siburan		4	3	4	4	3	1	3	4	2
A39	Marhot A. Sianturi		4	4	3	2	1	4	2	4	3
A40	Melida Sianturi		4	3	3	4	2	1	4	4	3

Fig 5. C4.5 Associating Results

B. Implementation of C4.5

The algorithmic process carried out using the C4.5 method is as follows:

1. Calculating Gain and Entropy

A decision tree is created after calculating the total entropy, using the entropy of each attribute, and calculating the gain and determining the highest gain. This can be calculated using the following equation:

$$\text{Entropy (Total)} = \left(-\frac{24}{40} \times \text{Log}_2\left(\frac{24}{40}\right) \right) + \left(-\frac{16}{40} \times \text{Log}_2\left(\frac{16}{40}\right) \right)$$

$$= 0.97095$$

The entropy calculation for each attribute is the same as the calculation for finding the total entropy. The gain value of the Gain attribute is calculated using the following equation:

$$\begin{aligned} Gain &= 0.97075 \left(\left(\frac{17}{0.97075} * 0.97742 \right) + \left(\frac{23}{0.97095} * 0.965664 \right) \right) \\ &= 0.0003 \end{aligned}$$

4. CONCLUSION

Based on the analysis of the problems encountered in the case discussed, which focused on determining the level of public satisfaction in determining the performance of the PLKB, the following conclusions can be drawn: Based on the research results, the C4.5 method was applied by implementing the method steps and determining the level of public satisfaction in determining the performance of the PLKB. Based on the research results, the data mining system application was designed by modeling the system and building a web-based system to determine the level of public satisfaction in determining the performance of the PLKB using the C4.5 method. Based on the research results, system testing was conducted by logging into the system and processing variable and process data to determine the level of public satisfaction in determining the performance of the PLKB, by displaying a report on the results of the level of public satisfaction in determining the performance of the PLKB.

REFERENCES

- [1] Sari, I.P., Al-Khowarizmi, A.K., & Batubara, I.H. (2021). Cluster Analysis Using K-Means Algorithm and Fuzzy C-Means Clustering For Grouping Students' Abilities In Online Learning Process. *Journal of Computer Science, Information Technology and Telecommunication Engineering*, Vol. 2 No. 1, page 139-144
- [2] Sari, I.P., Batubara, I.H., & Al-Khowarizmi, A.K. (2021). Sensitivity Of Obtaining Errors In The Combination Of Fuzzy And Neural Networks For Conducting Student Assessment On E-Learning. *International Journal of Economic, Technology and Social Sciences (Injects)*, Vol. 2 No. 1, page 331- 338
- [3] Sari, I.P., Fahroza, M.F., Mufit, M.I., & Qathrunad, I.F. (2021). Implementation of Dijkstra's Algorithm to Determine the Shortest Route in a City. *Journal of Computer Science, Information Technology and Telecommunication Engineering*, Vol. 2 No. 1, page 134-138
- [4] Sari, I.P., Al-Khowarizmi, A.K., Ramadhani, F., & Sulaiman, O.K. (2023). Implementation of the Selection Sort Algorithm to Sort Data in PHP Programming Language. *Journal of Computer Science, Information Technology and Telecommunication Engineering*, Vol. 4 No. 1, page 377-381
- [5] Manurung, A.A., Nasution, M.D., & Sari, I.P. (2023). Implementation of Fuzzy K-Nearest Neighbor Method in Dengue Disease Classification. *2023 11th International Conference on Cyber and IT Service Management (CITSM)*
- [6] Ramadhani, F., Satria, A., & Sari, I.P. (2023). Implementasi Metode Fuzzy K-Nearest Neighbor dalam Klasifikasi Penyakit Demam Berdarah. *Hello World Jurnal Ilmu Komputer* 2 (2), 58-62
- [7] Sari, I.P., Batubara, I.H., Ramadhani, F., & Wardani, S. (2022). Perancangan Sistem Antrian pada Wahana Hiburan dengan Metode First In First Out (FIFO). *Sudo Jurnal Teknik Informatika* 1 (3), 116-123
- [8] Ramadhani, F., Satria, A., & Sari, I.P. (2022). Aplikasi internet berbasis website sebagai E-Commerce penjualan komponen sport car. *Blend Sains Jurnal Teknik* 1 (2), 69-75
- [9] Sari, I.P., Al-Khowarizmi, A., & Ramadhani, F. (2021). User Interface Prototype Using User Centered System Design Method in Motorvice Information System. *2021 International Conference on Computer Science and Engineering (IC2SE)* 1, 1-6
- [10] Ramadhani, F., Al-Khowarizmi, A.K., & Sari, I.P. (2021). Improving the Performance of Naïve Bayes Algorithm by Reducing the Attributes of Dataset Using Gain Ratio and Adaboost. *2021 International Conference on Computer Science and Engineering (IC2SE)* 1, 1-5
- [11] Sitompul, D.N., Rahmatika, A., & Sari, I.P. (2023). Application of The Sales and Purchase Program Using The Rapid Application Development Model. *Al'adzkiya International of Computer Science and Information Technology (AloCSIT) Journal*, Vol. 4 No. 1, page 6-16
- [12] Sari, I.P., Ramadhani, F., Satria, A., & Apdilah, D. (2023). Implementasi Pengolahan Citra Digital dalam Pengenalan Wajah menggunakan Algoritma PCA dan Viola Jones. *Hello World Jurnal Ilmu Komputer* 2 (3), 146-157
- [13] Batubara, I.H., Sari, I.P., Siregar, E.F.S., & Lubis, B.S. (2021). Meningkatkan Kemampuan Penalaran Matematika Melalui Metode Penemuan Terpandu Berbantuan Software Autograph. *Seminar Nasional Teknologi Edukasi Sosial dan Humaniora* 1 (1), 699-705

[14] Apdilah, D., & Sari, I.P. (2021). Optimization Of The Fuzzy C-Means Cluster Center For Credit Data Grouping Using Genetic Algorithms. *Al'adzkiya International of Computer Science and Information Technology (AIOCSIT) Journal*, Vol. 2 No. 2, page 156-163

[15] Sulaiman, O.K., & Sari, I.P. (2021). Implementation Data Mining For Level Analysis Traffic Violation By Algorithm Association Rule. *Al'adzkiya International of Computer Science and Information Technology (AIOCSIT) Journal*, Vol. 2 No. 2, page 128-135

[16] Sari, I.P., Hariani, P.P., Al-Khwarizmi, A.K., Ramadhani, F., Sulaiman, O.K., Satria, A., & Manurung, A.A. (2024). CLUSTERING HIV/AIDS DISEASE USING K-MEANS CLUSTERING ALGORITHM. *Proceeding International Seminar on Islamic Studies*. Vol. 5, No. 1 (2024), 1668-1676

[17] Sari, I.P., Ramadhani, F., Satria, A., & Sulaiman, O.K. (2023). Leukocoria Identification: A 5-Fold Cross Validation CNN and Adaboost Hybrid Approach. *2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)*. 486-491

[18] Sari, I.P., Al-Khwarizmi, A.K., Sulaiman, O.K., & Apdilah, D. (2023). Implementation of Data Classification Using K-Means Algorithm in Clustering Stunting Cases. *Journal of Computer Science, Information Technology and Telecommunication Engineering*, Vol. 4 No. 2, page 402-412

[19] Sari., I.P, Batubara., I.H, Al-Khwarizmi., A, & PP Hariani. (2022). Perancangan Sistem Informasi Pengelolaan Arsip Digital Berbasis Web untuk Mengatur Sistem Kearsipan di SMK Tri Karya. *Wahana Jurnal Pengabdian kepada Masyarakat* 1 (1), 18-24

[20] Habibi., F, Qathrunada., I.F, & Anggraini., T. (2023). "Design and Build a Tourism Website Using Shopify Framework". *Hanif Journal of Information Systems*. Vol. 1 No. 1, 2023.

[21] Sari., I.P, A Syahputra, N Zaky, RU Sibuea, & Z Zakhir. (2022). Perancangan sistem aplikasi penjualan dan layanan jasa laundry sepatu berbasis website. *Blend sains jurnal teknik* 1 (1), 31-37

[22] Sari., I.P, A Azzahrah, FQ Isnaini, L Nurkumala, & A Thamita. (2022). Perancangan sistem absensi pegawai kantor secara online pada website berbasis HTML dan CSS. *Blend sains jurnal teknik* 1 (1), 8-15

[23] Septiana., D. (2024). Forecasting Rice Prices with Holt-Winter Exponential Smoothing Model. *Hanif Journal of Information Systems*. Vol. 1 No. 2, 2024.

[24] Sari.,I.P, & Ramadhani., F. (2021). Pengaruh Teknologi Informasi Terhadap Kewirausahaan Pada Aplikasi Perancangan Jual Beli Jamu Berbasis WEB. *Prosiding Seminar Nasional Kewirausahaan* 2 (1), 874-878.

[25] Satria, A, Ramadhani, F, & Sari, I.P. (2023). Rancang Bangun Sistem Informasi Penerimaan Peserta Didik Baru (PPDB) Sekolah Menengah Kejuruan Telkom 2 Medan Menggunakan Codeigniter. *Wahana Jurnal Pengabdian kepada Masyarakat* 2 (1), 23-31

[26] Sari., I.P, A Jannah, AM Meuraxa, A Syahfitri, & R Omar. (2022). Perancangan Sistem Informasi Penginputan Database Mahasiswa Berbasis Web. *Hello World Jurnal Ilmu Komputer* 1 (2), 106-110.

[27] Mahardika., F, & Abdillah., M.L. (2024). Design of Unified Modeling Language Information System for Motorcycle Unit Selling and Buying Transactions using the Waterfall Method. *Hanif Journal of Information Systems*. Vol. 1 No. 2, 2024.

[28] Sari., I.P, & Batubara., I.H. (2021). Perancangan Sistem Informasi Laporan Keuangan Pada Apotek Menggunakan Algoritma K-NN. *Seminar Nasional Teknologi Edukasi dan Humaniora (SiNTESa)* 1 (2021 - ke 1

[29] Sari., I.P, & Batubara., I.H. (2021). User Interface Information System for Using Account Services (Joint Account) WEB-Based. *International Journal of Economic, Technology and Social Sciences (Injects)*, 462-469

[30] Sari., I.P, Al-Khwarizmi., A, & Batubara., I.H. (2021). Implementasi Aplikasi Mobile Learning Sistem Manajemen Soal dan Ujian Berbasis Web Pada Platform Android. *IHSAN: JURNAL PENGABDIAN MASYARAKAT* 3 (2), 178-183

[31] Mudafri., H.A. (2024). Design of a Web-Based Coffeeshop Ordering Information System. *Hanif Journal of Information Systems*. Vol. 1 No. 2, 2024.

[32] Sari., I.P, Hariani., P.P, Satria., A, & Manurung., A.A. (2023). Rancang Bangun Sistem Informasi Pengelolaan Arsip Materi Ajar Berbasis Web untuk Guru MAS Darul Falah. *Wahana Jurnal Pengabdian kepada Masyarakat* 2 (2), 59-65

[33] Ramadhani., F, & Sari., I.P. (2021). Pemanfaatan Aplikasi Online dalam Digitalisasi Pasar Tradisional di Medan. *Prosiding Seminar Nasional Kewirausahaan* 2 (1), 806-811

[34] Sari., I.P, Sulaiman., O.K, & Apdillah, D. (2024). Rancang Bangun Game Zombie Menggunakan Kodular Berbasis Android. *Jurnal Minfo Polgan* 13 (1), 293-302

[35] Ichsan., A, Siambaton., M.Z, & Nasution, K. (2023). "Android-Based Practical Work Student Registration Form Application System Design". *Hanif Journal of Information Systems*. Vol. 1 No. 1, 2023.

[36] Sari., I.P, Sulaiman., O.K, Ramadhani., F, & Satria., A. (2023). Perancangan Sistem Manajemen Surat Berbasis Web Pada Kantor Camat Tano Tombangan Angkola. *INCODING: Journal of Informatics and Computer Science Engineering* 3 (2), 61-76.

[37] Jannah., A, Meuraxa., A.M, & Azzahrah., A. 2023. "Web Based E-Commerce System Design at EXO Shop Using The Waterfall Method". *Hanif Journal of Information Systems*. Vol. 1 No. 1, 2023.

[38] Sari., I.P, Al-Khowarizmi., A, , Jannah., A, Meuraxa., A.M, & Tanjung., M.I. (2023). Web-Based Offline Game Suit Design: A Model Overview. *Journal of Computer Science, Information Technology and Telecommunication Engineering* 4 (2), 389-394.

[39] Guntur., S, Ichsan., A, & Sari., I.P. (2024). Designing a Web-Based Mail Management System at the Beringin Helvetia Sub-district Office. *Altafani: Jurnal Pengabdian Masyarakat* 1 (1)

[40] Sari., I.P, Sulaiman., O.K, Al-Khowarizmi., A, & Azhari., M. (2023). Perancangan Sistem Informasi Pelayanan Masyarakat pada Kelurahan Sipagimbar dengan Metode Prototype Berbasis Web. *Blend Sains Jurnal Teknik* 2 (2), 125-134.

[41] Hutasuhut., B.K, Sari., I.P, & Al-Khowarizmi, A.K. (2023). Analysis the Effect of Digitalization and Technology on Web-Based Entrepreneurship. *Journal of Computer Science, Information Technology and Telecommunication Engineering*