Convolutional Neural Network Based Human Posture Correction Implementation for Yoga Health Motion Classification

Elza Ahmad Raihan

Abstract


Post-pandemic lifestyle patterns have undergone many changes with the implementation of digital transformation, one of which is the meditation pattern such as yoga practice that can be done independently at home without direct interaction with the instructor. This study also aims to develop a yoga movement classification system using Convolutional Neural Network (CNN) based on human posture correction. Using the Movenet model, this system can recognise and classify different yoga poses to provide accurate feedback on correct posture. Training data was collected from yoga photographs and processed into pose images that were analysed using CNN. The results of this study indicate that the developed system is able to achieve a high level of accuracy in identifying yoga poses, which has the potential to help users improve their posture and reduce the risk of injury. This system is also implemented in a mobile application, making it easier for users to access posture correction in real time. As such, this research makes a significant contribution to the fields of health and technology by providing innovative solutions for safer and more effective yoga practice.


Full Text:

PDF

References


Abed, A. A., Al-Ibadi, A., & Abed, I. A. (2023). Real-time multiple face mask and fever detection using YOLOv3 and TensorFlow lite platforms. Bulletin of Electrical Engineering and Informatics, 12(2), 922–929. https://doi.org/10.11591/eei.v12i2.4227

Ayuningtyas, E. Y. (2023). Penerapan Senam Yoga Terhadap Tekanan Darah Pada Penderita Hipertensi Di Kelurahan Jebres Surakarta. 1(4), 131–145. https://doi.org/10.59680/anestesi.v1i4.529

Dufan J. P. Manajang, Sherwin R.U.A. Sompie, & Agustinus Jacobus. (2020). Implementasi Framework Tensorflow Object Detection dalam mengklasifikasi jenis kendaraan bermotor. Jurnal Teknik Informatika, 15(Jurnal Teknik Informatika), 171–178.

Elstad, T., Ulleberg, P., Klonteig, S., Hisdal, J., Dyrdal, G. M., & Bjorndal, A. (2020). The effects of yoga on student mental health: a randomised controlled trial. Health Psychology and Behavioral Medicine, 8(1), 573–585. https://doi.org/10.1080/21642850.2020.1843466

Gohel, M., Phatak, A., Kharod, U., Pandya, B., Prajapati, B., & Shah, U. (2021). Effect of long-term regular Yoga on physical health of Yoga practitioners. Indian Journal of Community Medicine, 46(3), 508–510. https://doi.org/10.4103/ijcm.IJCM_554_20

Hindarto, H., Sumarno, S., & Rosid, M. A. (2023). Buku Ajar Kecerdasan Buatan/Artificial Intelegent (AI). In Buku Ajar Kecerdasan Buatan/Artificial Intelegent (AI). Umsida Press. https://doi.org/10.21070/2022/978-623-464-034-2

Jo, B. J., & Kim, S. K. (2022). Comparative Analysis of OpenPose, PoseNet, and MoveNet Models for Pose Estimation in Mobile Devices. Traitement Du Signal, 39(1), 119–124. https://doi.org/10.18280/ts.390111

Karnadi, B., Lubis, C., Agus, ), & Dharmawan, B. (n.d.). Jurnal Ilmu Komputer dan Sistem Informasi Integrasi Metode Convolutional Neural Networks dengan Arsitektur Model PoseNet untuk Pengembangan Sistem Klasifikasi Gerakan serta Monitoring Repetisi pada Olahraga Bulu Tangkis.

Mehindra Prasmatio, R., Rahmat, B., & Yuniar, I. (2020). ALGORITMA CONVOLUTIONAL NEURAL NETWORK. In Jurnal Informatika dan Sistem Informasi (JIFoSI) (Vol. 1, Issue 2).

Mooventhan, A., & Nivethitha, L. (2020). Role of yoga in the prevention and management of various cardiovascular diseases and their risk factors: A comprehensive scientific evidence-based review. In Explore (Vol. 16, Issue 4, pp. 257–263). Elsevier Inc. https://doi.org/10.1016/j.explore.2020.02.007

Purna Irawan, Y., Susilawati, I., & Kunci, K. (n.d.). Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN).

Putro Eko Cahyono, & Rolly Maulana Awangga. (2020). Tutorial Gender Classification Using The You Look Only Once (YOLO (Vol. 1). books.google.com.

Rere, L. M. R., Usna, S., & Soegijanto, D. (2019). Studi Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network. Seminar Nasional Teknologi Informasi Dan Komunikasi STI&K (SeNTIK), 3.

Santoso, A., & Ariyanto, G. (n.d.). IMPLEMENTASI DEEP LEARNING BERBASIS KERAS

UNTUK PENGENALAN WAJAH. Jurnal Teknik Elektro, 18(01). https://www.mathworks.com/discovery/convol

Sharma, A., Shah, Y., Agrawal, Y., & Jain, P. (2022). REAL-TIME RECOGNITION OF YOGA POSES USING COMPUTER VISION FOR SMART HEALTH CARE A PREPRINT.

Singh PK. (2017, July 1). International Day of Yoga 2017-World Health Organization. WHO. Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan

Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063

Zuo, X., Yang, X., Dou, Z., & Wen, J. R. (2019). RUCIR at TREC 2019: Conversational Assistance Track. 28th Text REtrieval Conference, TREC 2019 - Proceedings. https://doi.org/10.1145/1122445.1122456

Motamed, S., & Askari, E. (2022). Recognition of Attention Deficit/Hyperactivity Disorder (ADHD) Based on Electroencephalographic Signals Using Convolutional Neural Networks (CNNs). Journal of Information Systems and Telecommunication, 10(39), 222–228. https://doi.org/10.52547/jist.16399.10.39.222

Moayyed, H., Mohammadpourfard, M., Konstantinou, C., Moradzadeh, A., Mohammadi-Ivatloo, B., & Aguiar, A. P. (2022). Image Processing Based Approach for False Data Injection Attacks Detection in Power Systems. IEEE Access, 10, 12412–12420. https://doi.org/10.1109/ACCESS.2021.3131506

He, X., & Dong, F. (2023). A deep learning-based mathematical modeling strategy for classifying musical genres in musical industry. Nonlinear Engineering, 12(1). https://doi.org/10.1515/nleng-2022-0302




DOI: https://doi.org/10.55311/aiocsit.v5i1.316

Refbacks

  • There are currently no refbacks.