Analysis of Rainfall Prediction Using Fuzzy Time Series Method in Medan City

Syaftial Zikri

Abstract


The increasingly significant climate change causes high rainfall variability, thus requiring an accurate prediction method for disaster mitigation planning and water resource managment. This study aim to analyze rainfal prediction in Medan City using Fuzzy Time Series (FTS) methode. Historical rainfall data for Medan City for a certain period is collected and processed to build an FTS model. The fuzzification process is carried out to convert numerical data into fuzzy values, then the time series relationship is identified to predict the next rainfall value. Based on Chen's fuzzy time series with the detemination of the average-based interval, the Medan City rainfall forecast based on January 2019-December 2023 data obtained the forecast results for January 2024 is 386.7 mm. From the result of tests that have caried out, the best number of sampels be used in the Medan City rainfall case is 60 data, namely the period January 2019 - December 2023.

Full Text:

PDF

References


Ajr, E. Q., & Dwirani, F. (2019). Menentukan Stasiun Hujan dan Curah Hujan dengan Metode Polygon Thiessen Daerah Kabupaten Lebak. Agustus, 2(2), 139–146.

Anggraini, N., Pangaribuan, B., Siregar, A. P., Sintampalam, G., Muhammad, A., Damanik, M. R. S., & Rahmadi, M. T. (2021). Analisis Pemetaan Daerah Rawan Banjir Di Kota Medan Tahun 2020. Jurnal Samudra Geografi, 4(2), 27–33. https://doi.org/10.33059/jsg.v4i2.3851

Anggraini, Y., Pasha, D., Damayanti, D., & Setiawan, A. (2020). Sistem Informasi Penjualan Sepeda Berbasis Web Menggunakan Framework Codeigniter. Jurnal Teknologi Dan Sistem Informasi, 1(2), 64–70. https://doi.org/10.33365/jtsi.v1i2.236

Dikelurahan, D., Kaduronyok, D., Cisata, K., Pandeglang, K., Web, B., Nugroho, A. H., & Rohimi, T. (2020). Perancangan Aplikasi Sistem Pengolahan. Jutis, 8(1), 17749231–5527063.

Habinuddin, E. (2022). Penerapan Fuzzy Time Series Untuk Memprediksi Curah Hujan Kota Bandung. Jurnal Digit, 12(2), 115. https://doi.org/10.51920/jd.v12i2.288

Indarwati, S., Respati, S. M. B., & Darmanto, D. (2019). Kebutuhan Daya Pada Air Conditioner Saat Terjadi Perbedaan Suhu Dan Kelembaban. Jurnal Ilmiah Momentum, 15(1), 91–95. https://doi.org/10.36499/jim.v15i1.2666

Insani, F., Fadilah, S., & Sanjaya, S. (2020). Prediksi cuaca pekanbaru menggunakan fuzzy tsukamoto dan algoritma genetika. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI), 255–262.

Luthfiarta, A., Febriyanto, A., Lestiawan, H., & Wicaksono, W. (2020). Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda. JOINS (Journal of Information System), 5(1), 10–17. https://doi.org/10.33633/joins.v5i1.2760

Nanda, A. R., Sandi, E., & Sulvahendra, S. (2019). ANALYSIS OF THE EFFECT OF RAIN FREQUENCY ON PERMEABILITY AND PONDONG TIME ON TYPE SOIL COMMON SOIL (Laboratory Testing Study With Rainfall Simulator). Teknik Hidro, 12(1), 1–11. https://doi.org/10.26618/th.v12i1.2460

Rahmawati, R., Sari, D. E., & Rahma, A. N. (2021). Peramalan Curah Hujan di PPKS Bukit Sentang Dengan Menggunakan Fuzzy Time Series Ruey Chyn Tsaur. 17(1), 51–61. https://doi.org/10.24198/jmi.v17.n1.32820.51-61

Satria, B. (2022). IoT Monitoring Suhu dan Kelembaban Udara dengan Node MCU ESP8266. Sudo Jurnal Teknik Informatika, 1(3), 136–144. https://doi.org/10.56211/sudo.v1i3.95

Soekendro, C. A. (2021). PREDIKSI CURAH HUJAN DI KAB.BANDUNG DENGAN ANALISIS TIME SERIES, MENGGUNAKAN MODEL SARIMA (Seasonal Autoregressive Integrated Moving Average). E-Proceeding of Engineering, 8(2), 2865–2875.

Soewarianto, F., Sulaksono, D. H., Eka Yuliastuti, G., & Nurina Prabiantissa, C. (2022). Implementasi IoT untuk Monitoring Kecepatan Angin di Pesisir Pantai Kenjeran Surabaya. Seminar Nasional Sains Dan Teknologi Terapan X2022, 1–7.

Syahidin, S., & Adnan, A. (2022). Analisis Pengaruh Harga Dan Lokasi Terhadap Kepuasan Pelanggan Pada Bengkel Andika Teknik Kemili Bebesen Takengon. Gajah Putih Journal of Economics Review, 4(1), 20–32. https://doi.org/10.55542/gpjer.v4i1.209




DOI: https://doi.org/10.55311/aiocsit.v5i1.319

Refbacks

  • There are currently no refbacks.