Predicting the Risk of Online Sales Fraud with the Naïve Bayes Approach on Facebook Social Media

Leony Ayu Diah Pasha

Abstract


The rapid development of digital shopping media is accompanied by increasing cases of online fraud, especially through social media platforms such as Facebook. This study aims to develop a prediction model for the risk of online sales fraud using the Naïve Bayes algorithm. The data used is the data of buying and selling transactions that occur through the Facebook marketplace. The data has been collected on the Kaggle platform so that it can be used directly. Data in the form of extracted features include seller characteristics, products sold, number of transactions, device usage and other fraud indicators. Important features that affect the potential for fraud are identified and used in the machine learning process. The results of the study show that the Naïve Bayes model is able to provide accurate predictions in identifying the risk of online sales fraud, with a satisfactory accuracy rate of 95%. The results of the study are expected to contribute to the development of a more effective fraud detection system and increase user confidence in making online transactions.

Full Text:

PDF

References


Acmad. (2018). Pengaruh Pengguna E-Commerce Terhadap Transaksi. Faktor Exacta, 11(1), 7–16.

Agusti, R., & Aravik, H. (2023). Analisis Penggunaan Marketplace Facebook Terhadap Penjualan Mebel Dalam Bauran Pemasaran Syariah Di Supran Mebel Karang Anyar Palembang. Jurnal Bisnis Dan Manajemen (JURBISMAN), 1(2), 275–290.

Arifiyanti, A. A., & Wahyuni, E. D. (2020). Smote: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining. SCAN - Jurnal Teknologi Informasi Dan Komunikasi, 15(1), 34–39. https://doi.org/10.33005/scan.v15i1.1850

Azeez, N. A., Misra, S., Lawal, O. I., & Oluranti, J. (2021). Identification and Detection of Cyberbullying on Facebook Using Machine Learning Algorithms. Journal of Cases on Information Technology, 23(4), 1–21. https://doi.org/10.4018/JCIT.296254

Bengnga, A., & Ishak, R. (2022). Implementasi Seleksi Fitur Klasifikasi Waktu Kelulusan Mahasiswa Menggunakan Correlation Matrix with Heatmap. Jambura Journal of Electrical and Electronics Engineering, 4(2), 169–174. https://doi.org/10.37905/jjeee.v4i2.14403

Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613.

Cholissodin, I., & Soebroto, A. A. (2021). AI , MACHINE LEARNING & DEEP LEARNING ( Teori & Implementasi ). December.

Damanik, A. R., Sumijan, S., & Nurcahyo, G. W. (2021). Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes. Jurnal Sistim Informasi Dan Teknologi, 3, 88–94. https://doi.org/10.37034/jsisfotek.v3i3.49

Fahmi, M., Postingan, F. A. K., Facebook, P., Phising, D., Bayes, N., Fadhillah, M. F., Arsyi, F., & Fadlillah, N. (2023). Klasifikasi Postingan Pengguna Facebook Untuk Deteksi Phising Menggunakan Naive Bayes. Jurnal Riset Informatika Dan …, 1(1), 25–29. http://ejurnal.jejaringppm.org/index.php/jriti/article/view/49

Koh, H. C., & Tan, G. (2011). Data mining applications in healthcare. Journal of Healthcare Information Management, 19(2), 65-72.

Lestari, T. S., & Sirodj, D. A. N. (2022). Klasifikasi Penipuan Transaksi Kartu Kredit Menggunakan Metode Random Forest. Jurnal Riset Statistika, 1(2), 160–167. https://doi.org/10.29313/jrs.v1i2.525

Loelianto, I., Thayf, M. S. S., & Angriani, H. (2020). Implementasi Teori Naive Bayes Dalam Klasifikasi Calon Mahasiswa Baru Stmik Kharisma Makassar. SINTECH (Science and Information Technology) Journal, 3(2), 110–117. https://doi.org/10.31598/sintechjournal.v3i2.651

Noor, T., Masnun, & Putri, K. G. (2021). Jurnal Hukum dan Kemasyarakatan Al-Hikmah Vol. 2, No.3, September 2021 428. Jurnal Hukum Dan Kemasyarakatan Al-Hikmah, 2(3), 428–446.

Purba, K. S., Hartama, D., & Suhada, S. (2022). Analisis Data Mining Pesebaran Siswa Smp Di Pematangsiantar Dengan Metode Algoritma K-Means Clustering. Kesatria : Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 3(1), 1–8. https://doi.org/10.30645/kesatria.v3i1.91

Renaldy, & Putra, D. S. D. (2023). Aplikasi Prediksi Harga Ayam Dengan Metode Naives Bayes Pada Supplier Ayam Potong. Jurnal Algor, 4(2), 141–148. http://repositori.buddhidharma.ac.id/id/eprint/1609

Rifai, M. F., Jatnika, H., & Valentino, B. (2019). Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS). Petir, 12(2), 131–144. https://doi.org/10.33322/petir.v12i2.471

Satria, A., Badri, R. M., & Safitri, I. (2023). Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning. Digital Transformation Technology, 3(2), 389–398. https://doi.org/10.47709/digitech.v3i2.2852

Silalahi, P. R., Salwa Daulay, A., Siregar, T. S., Ridwan, A., Islam, E., Ekonomi, F., & Islam, B. (2022). Analisis Keamanan Transaksi E-Commerce Dalam Mencegah Penipuan Online. Jurnal Manajemen, Bisnis Dan Akuntansi, 1(4), 224–235.

Simatupang, S., Efendi, E., & Putri, D. E. (2021). Facebook Marketplace Serta Pengaruhnya Terhadap Minat Beli. Jurnal Ekbis, 22(1), 28. https://doi.org/10.30736/je.v22i1.695

Sunardi, S., Fadlil, A., & Kusuma, N. M. P. (2022). Implementasi Data Mining dengan Algoritma Naïve Bayes untuk Profiling Korban Penipuan Online di Indonesia. Jurnal Media Informatika Budidarma, 6(3), 1562. https://doi.org/10.30865/mib.v6i3.3999

Suntoro, J. (2019). 22-DATA MINING Algoritma dan Implementasi Menggunakan Bahasa Pemrograman PHP. DATA MINING Algoritma Dan Implementasi Menggunakan Bahasa Pemrograman PHP, 9(9), 259–278.

Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Proceedings of the 1st ACM Conference on Electronic Commerce (EC-99).

Tana, M. P., Marisa, F., & Wijaya, I. D. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. J I M P - Jurnal Informatika Merdeka Pasuruan, 3(2), 17–22. https://doi.org/10.37438/jimp.v3i2.167

Twin, A. (2005). Data Mining Data mining. In Mining of Massive Datasets (Vol. 2,IssueJanuary2013). https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part




DOI: https://doi.org/10.55311/aiocsit.v5i2.320

Refbacks

  • There are currently no refbacks.