Analysis and Comparison of the Performance of the K-Means Algorithm and the X-Means Algorithm in Clustering Disease Types in Mitra Medika Hospital

Herdawani Afdilla

Abstract


The system currently used by the hospital is still manual in managing patient data and information. What happens at Mitra Medika Hospital is that it is difficult to provide medical needs related to the diseases experienced by patients, considering that there are many types of diseases, so they provide many medical needs. Several inpatients have used BPJS facilities for various diseases suffered by the patient to carry out further examinations so that they can recover from the disease they are suffering from. Mitra Medika Hospital only looks at medical needs based on the disease suffered by the patient, however, seeing the large amount of patient history data makes it very difficult for Mitra Medika Hospital to find out the groups of diseases that patients often experience. This research uses a quantitative approach which starts from a theoretical framework, expert ideas, and researchers' understanding based on their experience, then developed into problems and solutions that are proposed to obtain justification (verification) or assessment in the form of empirical data support in the field. Here we apply a data mining pattern where data mining is extracting very large data (big data). Cluster 0: Of 245 Men (Suffering from 1-5 Diseases) Cluster 1: Of 255 Women (Suffering from 6-10 Diseases) Using the K-Means Algorithm and X-Means Algorithm can produce clustering. By using disease history data, you can apply the K-Means Algorithm and X-Means Algorithm methods to determine clusters. By using web programming, we can produce an analysis and comparison of the performance of the K-Means algorithm and the X-Means algorithm in clustering disease types in hospitals. Medika Partners.

Full Text:

PDF

References


Adil, A., Darma, I. M. Y., Heroe Santoso, & Lalu Sofiyandi Prayatna. (2023). Penerapan Algoritma K-Means Berbasis Spasial Untuk Pengelompokan Potensi Virus Covid-19 Di Kabupaten Dompu. SATIN - Sains dan Teknologi Informasi, 9(1), 64–73.

Al Amin, M., & Juniati, D. (2021). Math Unesa. Jurnal Ilmiah Matematika, 9(2), 437–446. https://media.neliti.com/media/publications/249234-model- infeksi-hiv-dengan-pengaruh-percob-b7e3cd43.pdf

Aldiyatna, K., Rahaningsih, N., & Dana, R. D. (2024). Penerapan Data Mining UntuK - clustering Penyakit Diare Menggunakan Algoritma K-Means ( Studi Kasus : Puskesmas Beber ). 8(3), 3124–3131.

Bayu Prasetyo, R., Agus Pranoto, Y., & Primaswara Prasetya, R. (2023). Implementasi Data Mining Menggunakan Algoritma K-Means Clustering Penyakit Pasien Rawat Jalan Pada Klinik Dr. Atirah Desa Sioyong, Sulteng. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2144–2151.

Cahyo Nugroho, A. (2019). Rancang Bangun Sistem Informasi Manajemen Surat Tugas Berbasis Web Menggunakan Waterfall Model. Jurnal Informatika: Jurnal Pengembangan IT, 4(2), 146–151.

Fitri, E. (2020). Sentiment Analysis of the Ruangguru Application Using Naive Bayes, Random Forest and Support Vector Machine Algorithms. Jurnal Transformatika, 18(1), 71.

Hermawan, Y. (2023). Comparison of K-Means Clustering Algorithm with Naive Bayes Clussifier Algorithm to Know Students Reading Interest Using Library Data Mining. Journal of Computer Science and Big Data, 1(September), 20–25.

Mahatmi, M. W., & Sebatubun, M. M. (2022). Strategi Komunikasi Stakeholders Dengan Pendekatan Data Alumni Menggunakan Data Mining. PRecious: Public Relations Journal, 2(1), 26–42.

Nurhakim, B., Septiani, I., Anam, K., & Pratama, D. (2024). Penarapan Algoritma K-Means Clustering Dalam Menganalisis Resiko Penyakit Stroke. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 318–322.

Noor, H., Dharmawati, A., & Qur’ana, T. W. (2021). Penerapan Algoritma K- Means Clustering Analysis Pada Kasus Penderita Hiv/Aids (Studi Kasus Kabupaten Banjar). Technologia: Jurnal Ilmiah, 12(2), 72.

Parlika, R., & Pratama, A. (2019). Aplikasi Mesin Penjawab Pesan Berbasis Bot Telegram, Php, Dan Mysql. SCAN - Jurnal Teknologi Informasi dan Komunikasi, 14(3), 1–9.

Rahmadayanti, F., Anggraini, I., & Susanti, T. (2023). Pengklasterisasian Data Penyakit Hipertensi dengan Menggunakan Metode Algoritma K-Means. Journal of Information System Research (JOSH), 4(2), 737–741.

Ramadhan, W., & Putra, S. H. (2022). Aplikasi Absensi Mahasiswa dan Dosen Politeknik Ganesha Medan Berbasis Web Menggunakan PHP dan MySql. Remik, 6(3), 526–533.

Rizki, M. I., Taqqiyuddin, T. A., & Cerelia, J. J. (2021). K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif COVID-19. Prosiding Seminar Nasional Matematika, 4, 685–692.

Saputra Sy, Y. (2022). Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means. Jurnal Sistim Informasi Dan Teknologi, 5, 33–37.

Sugianto, C. A., Rahayu, A. H., & Gusman, A. (2020). Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Cigugur Tengah. Journal of Information Technology, 2(2), 39–44.

Surbakti, N. K. (2021). Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RS.U.Bangkatan). Journal of Information and Technology, 1(2), 47–53.

Ucha Putri, S., Irawan, E., Rizky, F., Tunas Bangsa, S., -Indonesia Jln Sudirman Blok No, P. A., & Utara, S. (2021). Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5. Januari, 2(1), 39–46.

Wahyudi, I., Sulthan, M. B., & Suhartini, L. (2021). Analisa Penentuan Cluster Terbaik Pada Metode K-Means Menggunakan Elbow Terhadap Sentra Industri Produksi Di Pamekasan. Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM), 2(2), 72–81.

Wandana, J., Defit, S., & Sumijan, S. (2020). Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode Algoritma K-Means. Jurnal Informasi Dan Teknologi, 2, 4–9.

Zufria, I., & Damaiani Iskandar, I. (2024). Clustering Pasien Rawat Inap Di RS. USU Menggunakan Algoritma K-Means Clustering of Inpatients at USU Hospital Using the Algoritma K-Means Algorithm. JOURNAL OF COMPUTER SCIENCE AND INFORMATICS ENGINEERING (CoSIE), 03(2), 54–63.




DOI: https://doi.org/10.55311/aiocsit.v5i2.321

Refbacks

  • There are currently no refbacks.