Information System Location Selling Coffee Using Google Maps

Mhd Diansyari Hsb, Edy Rahman Syahputra

Abstract


The existence of suppliers in the coffee industry is very important in maintaining business continuity. Coffee farmers in general are still faced with a coffee trade system that is still controlled by traders. This trading system condition can regulate coffee sales transactions, both with regard to time, place and to whom the farmers' coffee beans are sold. The purpose of this research is to make it easier for sellers and buyers of coffee to find the whereabouts of coffee sellers. This research uses the Google Maps API to decide the location of coffee sales. In addition, this application is built using supporting software Android Studio and MySQL database. The results of the research show that the application functions properly without any errors or debug when the testing program is carried out where the results of the processing system display, including being able to find the location of the farmer, knowing the number of available coffee stocks and showing the way to the farmer's site.
Keyword : Coffee Farmers, Sales Locations, Google Maps, Android

Full Text:

PDF

References


Ariyanti, R., Khairil, & Kanedi, I. (2015). Pemanfaatan Google Maps Api Pada Sistem Informasi Geografis Direktori Perguruan Tinggi Di Kota Bengkulu. Jurnal Media Infotama, 11(2), 121.

Desiana, C., Rochdiani, D., & Pardani, C. (2017). ANALISIS SALURAN PEMASARAN BIJI KOPI ROBUSTA(Suatu Kasus di Desa Kalijaya Kecamatan Banjarsari Kabupaten Ciamis). Jurnal Ilmiah Mahasiswa AGROINFO GALUH, 4(2), 1–10.

El-Attar, M. (2019). Evaluating and empirically improving the visual syntax of use case diagrams. Journal of Systems and Software, 156, 136–163. https://doi.org/10.1016/j.jss.2019.06.096

Gusti, N., Putu, A., & Saptarini, H. (2016). Sistem informasi monitoring harga kopi internasional berbasis android. Jurnal Matrix, 6(3), 163–167.

Kustiari, T., Setyoko, U., & Fillaili, U. S. (2018). Peningkatan Mutu Kopi Ose ( Green Coffee ) dengan Sistem Pengolahan Basah Kopi di Kelompok Tani “ Sejahtera Bersama ” Desa Kemiri , Kecamatan Panti Kabupaten Jember Jawa Timur. Seminar Nasional Hasil Penelitian Dan Pengabdian Masyarakat, 181–186.

Parining, N., USTRIYANA, N. G., & MARYANA, I. K. (2015). Strategi Pemasaran Kopi Bubuk Lumbung Mas Kelurahan Beng Kecamatan Gianyar Kabupaten Gianyar. Journal of Agribusiness and Agritourism, 4(3), 175–184.

Rothfeld, R., Straubinger, A., Paul, A., & Antoniou, C. (2019). Analysis of European airports’ access and egress travel times using Google Maps. Transport Policy, 81(April 2018), 148–162. https://doi.org/10.1016/j.tranpol.2019.05.021

Sarjana, I. D. G. R., Darmawan, D. P., & Astiti, N. W. S. (2017). Merunut Potensi Kopi Arabika Sebagai Pengusung Utama Komoditas Ekpor Provinsi Bali. JURNAL MANAJEMEN AGRIBISNIS (Journal Of Agribusiness Management), 5(1), 103–110. https://doi.org/10.24843/jma.2017.v05.i01.p09

Sergievskiy, M. (2017). Description Logic Application for UML Class Diagrams Optimization. International Journal of Advanced Computer Science and Applications, 8(1), 268–272. https://doi.org/10.14569/ijacsa.2017.080134

Shih, C. H., Chen, F. C., Cheng, S. W., & Kao, D. Y. (2019). Using google maps to track down suspects in a criminal investigation. Procedia Computer Science, 159, 1900–1906. https://doi.org/10.1016/j.procs.2019.09.362

Sirait, M. T. (2020). ANALISIS TATANIAGA KELAPA SAWIT ( Elaeis guineensis Jacq .) ( STUDI KASUS : KECAMATAN KUALUH SELATAN KABUPATEN LABUHAN BATU UTARA ). Agriprimatech, 3(2), 74–83.

Syahputra, E. R., Dalimunthe, Y. A., & Irvan. (2017). Application of fuzzy C-Means Algorithm for Determining Field of Interest in Information System Study STTH Medan. Journal of Physics: Conference Series, 930(1), 11–17. https://doi.org/10.1088/1742-6596/930/1/012014

Syarif, M., Somantri, M., & Christiyono, Y. (2016). Perancangan Aplikasi Bernama My Landmark Berbasis SIG untuk Informasi Pnjualan Tanah pada Perangkat Bergerak Android. Transient, 5(2), 1–8. https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjU2vvmjOfSAhWHPo8KHXpADpwQFggdMAA&url=http%3A%2F%2Fdownload.portalgaruda.org%2Farticle.php%3Farticle%3D463221%26val%3D4717%26title%3DPERANCANGAN%2520APLIKASI%2520

Yang, S. Y., & Hsu, C. L. (2016). A location-based services and Google maps-based information master system for tour guiding. Computers and Electrical Engineering, 54, 87–105. https://doi.org/10.1016/j.compeleceng.2015.11.020

Yu, X., Stuart, A. L., Liu, Y., Ivey, C. E., Russell, A. G., Kan, H., Henneman, L. R. F., Sarnat, S. E., Hasan, S., Sadmani, A., Yang, X., & Yu, H. (2019). On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies. Environmental Pollution, 252, 924–930. https://doi.org/10.1016/j.envpol.2019.05.081


Refbacks

  • There are currently no refbacks.